

MARS SAMPLE SURVIVABILITY TESTING FOR MARS SAMPLE RETURN

Kristina A. Kipp, Jamie D. Kang, William A. Ferguson

12th International Planetary Probe Workshop Cologne, Germany June 15-19, 2015

Introduction

- M2020 rover will be coring and caching Mars samples for potential future Earth return
- In returning to Earth, samples would be exposed to a range of different and stressing environments
- To maximize science return, samples must maintain mechanical integrity through Earth return
- Currently, there is little understanding as to how Mars rocks would behave when subjected to these future environments
- Understanding the mechanical behavior of these rocks could influence design of the Mars 2020 sample caching system and future Mars Sample Return (MSR) missions

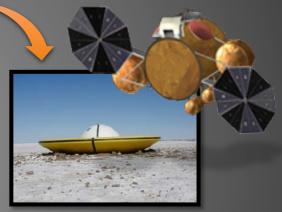
Potential Mars Sample Return Campaign

Sample Caching Mission

 Select, drill, encapsulate, and cache Mars rock cores

Stressing Loads

Rotary percussive coring



Sample Retrieval Mission

- Retrieve samples from Mars surface
- Launch samples into Mars orbit

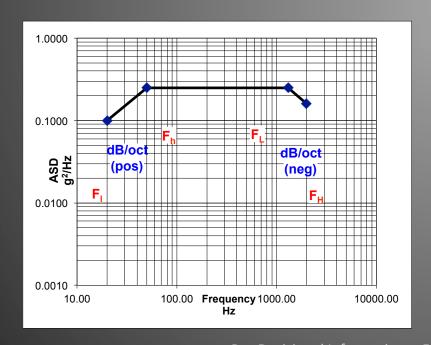
Stressing Loads

- Quasi static loads
- Random vibration
- Acoustic noise
- Pyroshock

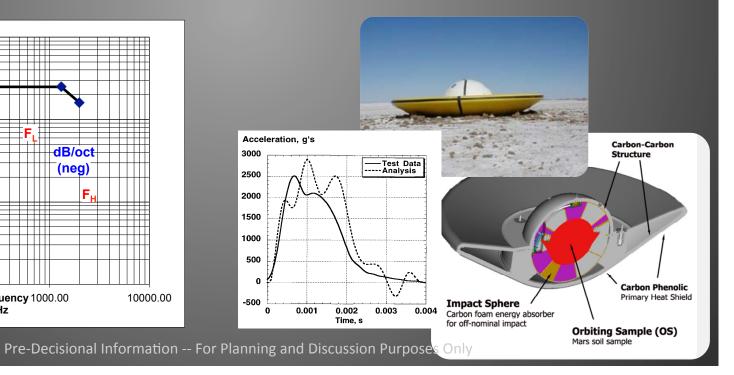
Sample Return Mission

- Acquire samples in Mars orbit and return samples to Earth
- Fully passive EEV

Stressing Loads


- Earth impact
- Quasi-static loads
- Dynamic environment

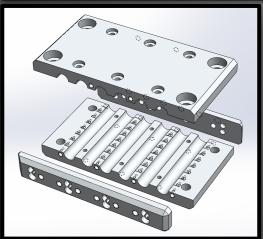
Future Stressing Environments

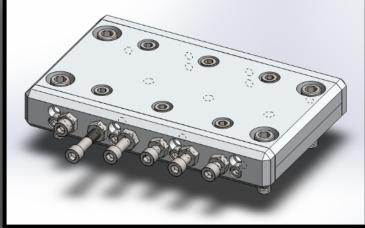


 Random vibration environment for <u>Mars Ascent Vehicle (MAV)</u>:

FREQ(Hz)	ASD(g²/Hz)	dB/OCT	Grms
20.00	0.1000	*	*
50.00	0.2500	3.01	2.29
1300.00	0.2500	0.00	17.83
2000.00	0.1600	-3.12	21.37

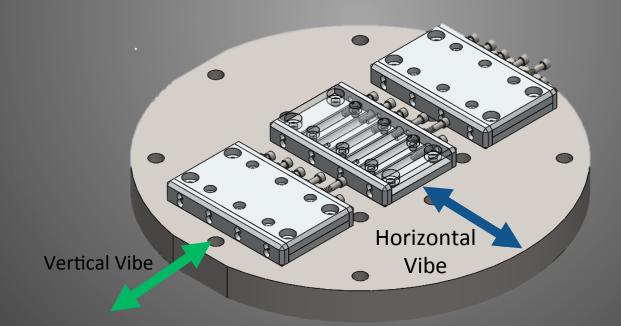
- Passive <u>Earth Entry Vehicle (EEV)</u>
 design for planetary protection
 Results in "hard" impact at Earth
 - Soft soil impact of 2500 g's (science target)
 - Hard surface impact of 3500 g's (containment target)


Test Setup: Clamshells

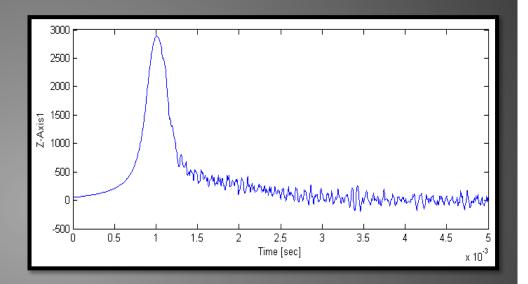


Clamshell Design

- Holds 6 rock cores each
- 2 versions accommodating 12mm and 13mm cores (with 0.5mm radial clearance)
- Accommodates varying core lengths
- Multiple approaches to retaining the samples
 - Variable headspace
 - No headspace
 - Secured via a spring (~20N preload)



Test Setup: Vibration Testing


- Utilizing a small shake table in JPL's Environmental Test Laboratory
- 3 clamshells are mounted to a circular vibration mount
- Samples can be vibrated in horizontal, vertical, and skew (45°) axes
 - [Vertical = along length of core]
 - Assuming orientation of cores with respect to gravity is not important

Test Setup: Impact Testing

- 100 lb aluminum alloy drop block
- 7 meter drop height onto cork
- Achieves ~3000 g's max deceleration
- Accommodates 3 clamshells per drop:
 - Vertical (along length of core)
 - Horizontal
 - Skew (45°)

Skew (45°)

The Completed Cube

Mars Analog Rock Selection

Old Dutch Pumice

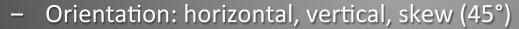
- Weak (~1-10 MPa compressive strength)
- Unaltered igneous (pyroclastic)
- Mechanically consistent

China Ranch Gypsum

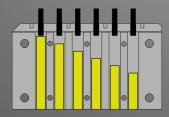
- Medium (~10-80 MPa compressive strength)
- Hydrated sulfate
- Higher biosignature preservation

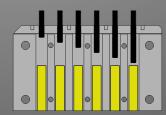
Bishop Tuff

- Medium strength
- Volcanic ash flow
- Similar mechanical properties
- Relatively water-insensitive



Initial Impact Testing: Chalk



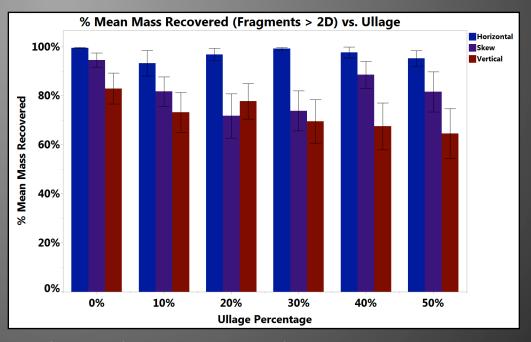

- Initial impact testing using chalk
 - Readily available
 - Used to determine general sensitivities
 - 12 mm diameter cores
 - Up to 8cm in length

- Headspace: amount of vertical clearance in channel (0 to 50%)
 - Including consideration of cores "stuck" at top of channel

Initial Impact Testing: Chalk

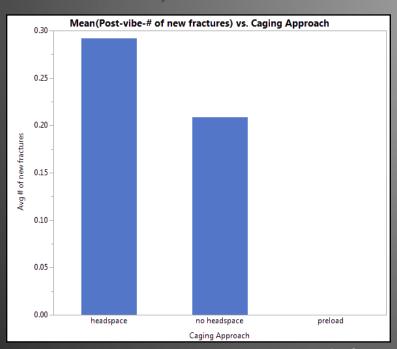
Orientation:

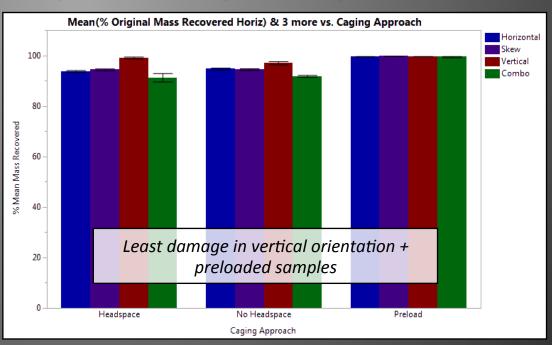
- Greatest damage to samples dropped in vertical orientation
- Cores "stuck" to top of channel experienced significantly more damage in vertical orientation


Headspace:

Increasing headspace increases damage to samples, mainly in vertical

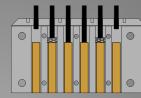
orientation


Test U16, Vertical Orientation, 3000 g'

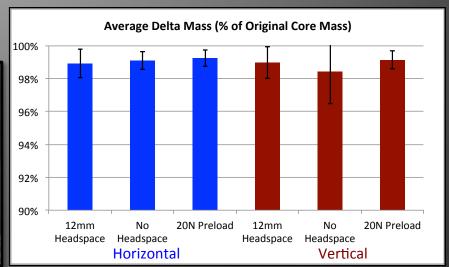


Mars Analog Core Testing: Vibration

- Vibration tests conducted on Mars Analog rock: <u>Bishop Tuff</u>
 - 72 cores tested
 - 20-2000 Hz, 21.37 G_{rms}, 3 minute duration
 - 18 cores each individually in horizontal, vertical, and skew configurations
 - 18 cores exposed to horizontal + vertical (cumulative)
 - Sample retention: 12mm headspace, No headspace, 20N preload



Mars Analog Core Testing: Impact



- Impact tests conducted on Mars Analog rocks: Bishop Tuff & Old Dutch Pumice
 - 36 cores tested for each rock type (3 total drops at 3000 g impact deceleration)
 - 18 cores each in horizontal and vertical configurations
 - 3 approaches tested for sample retention:
 - o 12mm headspace
 - o No headspace
 - No headspace + 20N preload

- Bishop Tuff: Little damage seen across all orientations & sample retention approaches
- Old Dutch Pumice: Results pending...

Results & Future Work

- Initially investigated sensitivities using chalk
 - Impact in horizontal orientation is preferred
 - Minimal headspace is preferred
- Completed initial round of testing using Mars analog rocks
 - Bishop Tuff is fairly resilient to the expected MAV random vibration and peak impact deceleration
 - Caveat: while drop tower achieves maximum likely peak deceleration, the overall energy imparted is less (lower impact velocity)
- Additional vibration and impact testing planned for a range of weaker Mars analog rock materials
- Larger drop tower currently under fabrication which will allow for greater impact velocities and therefore better representation of expected impact pulse
- Transition to testing sample cores using hardware representative of M2020 and future missions (tubes, plugs/seals, OS, EEV)

References

- 1. Mustard, J.F., et al, "Report of the Mars 2020 Science Definition Team," 1 July 2013.
- 2. Mattingly, R., and L. May, "Mars Sample Re-turn as a Campaign", 2011 IEEE Aerospace Conference, Big Sky, MT, 5-12 March 2011.
- 3. Dillman, R., and Corliss, J., 6th International Planetary Probe Workshop, Atlanta, GA, 21-27 June 2008.
- 4. Billings, M.D., Fasanella, E.L., Kellas, S., "Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles," 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, WA, 16-19 April 2001.

THANK YOU

Please contact the author if interested in obtaining a copy of the final report: Kristina.Kipp@jpl.nasa.gov

